Development of Concepts for Handling Firewood for Wood-Burning Stoves Reducing Cases of Burning Moist Firewood

M. Rasmussen and N.C.E. Andersen

DTU Design and Innovation, Technical University of Denmark

ABSTRACT

Burning moist firewood most often happen in the group of users of wood-burning stoves, who does not have the stove as their primary source of heat. This group of users buys their firewood from retailers in amounts of 2 m³ as either air dried, containing about 25 % water, or oven dried, containing about 20 % of water. The users find it difficult to estimate the correct moisture content of their firewood, which leads to burning moist firewood. It adds to the problem that the firewood is often not stored properly: covered from rain with a roof, lifted off the ground and with plenty of air-circulation. This was concluded through user-interviews, visits and analysis of the data collected on field work. To obtain a combustion temperature high enough to reduce the emission of particles, the firewood should contain less than 18 % water, but optimally about 15 % water.

The first concept is short pieces of firewood. Regular pieces are 0.35 m long, but these will be 0.15 m. Results of drying-tests, performed for Copenhagen University by A. Bergstedt, show that short pieces dry faster than long pieces, but they also absorb moisture faster, which emphasizes the importance of proper storage. Storage and doubt-issues are solved by the other concept; The Cassette. The Cassette will isolate the firewood from moisture, which leads to burning moist firewood. It adds to the problem that the firewood is often not stored properly: covered from rain with a roof, lifted off the ground and with plenty of air-circulation. This was concluded through user-interviews, visits and analysis of the data collected on field work. To obtain a combustion temperature high enough to reduce the emission of particles, the firewood should contain less that 18 % water, but optimally about 15 % water.

Calculations show that drying 2 m³ firewood, from containing 25 % water to 15 % water, will provide the user with up to 25 % more energy when burning the firewood. By only burning dry firewood, the users will only have to buy 2 m³ instead of 4 m³ to cover their required amount of energy, 2400 kWh/season, since 2 m³ of beech containing 25 % water will provide about 2120 kWh and 2 m³ of beech containing 15 % water will provide 2650 kWh (more than the energy needed for one season).

This way the user can halve the amount of firewood that must be bought every season. The amount of particles emitted by burning firewood will be lowered in general and the users will be able to use their wood-burning stoves in a more sustainable way by using less firewood.

Continuous Enzymatic Production of Biodiesel in CSTRs in Series

A. Toftgaard Pedersen

DTU Chemical Engineering, Technical University of Denmark

The demand for biodiesel (BD) is growing as a result of increased focus on reducing greenhouse gas emissions. However, today most biodiesel is produced from edible vegetable oils such as rapeseed oil. In order to use more sustainable raw materials new processes has to be developed, since the traditionally chemical catalyzed processes has difficulties handling the high free fatty acid (FFA) content of low grade oils, such as used cooking oil, algae oil or jatropha oil.

An enzymatic catalyzed reaction could solve the problems handling high FFA content feedstock and would furthermore result in lower costs e.g. fewer process steps, and improved glycerol quality. To date, soluble liquid lipases have not drawn much attention in the scientific literature, unlike their immobilized counterparts, because of the requirements to reusability to make the process cost-effective. However, soluble enzymes are cheaper, and not inactivated by glycerol and colloids [1]. In this study soluble liquid lipases have been used to catalyze the transesterification of rapeseed oil with ethanol into fatty acid ethyl esters (BD). Since BD is produced in huge quantities a continuous production is necessary and a suitable process layout could include several continuous stirred tank reactors (CSTRs) in series. In order to determine the optimal configuration of three CSTRs in series, reaction kinetic data has been collected in batch experiments and based on a Levenspiel plot the reactor volumes have been calculated. The calculations have been validated experimentally and the steady-state conversions in the three reactors found to be 61%, 80% and 93% respectively, with a total residence time of 24h. A way to make the productivity of the enzymes higher is by recirculating the aqueous phase containing the enzymes, but this is only worthwhile if enzyme activity is retained. It was found that 78% enzyme activity was preserved even after four reuses of the enzymes, proving that recirculation of the aqueous phase is possible and should be further investigated in an effort to make the enzymatic biodiesel process profitable.

REFERENCES