Use of sewage sludge ash in concrete after phosphorous recovery

Liv Rosenmai1 and Sabine Svendsen1

1DTU Civil Engineering, Technical University of Denmark

Phosphorous is a vital element for human beings as well as for animals. The mines from which phosphorous is extracted are almost emptied. Scientists estimate that there will be a grave shortage of phosphorous within the next 40-100 years. It is therefore important to find alternative sources from which phosphorous can be extracted. A secondary source might well be sewage sludge ash, as it contains about 10-20% phosphorous.

Sewage sludge ash is transported to Norway for deposition. This is a waste of a phosphorous source and an expensive and bad environmental solution. It is a far better thing to extract phosphorous from the sewage sludge ash and use the residue in the concrete. Furthermore - not taking ash to Norway means less CO\textsubscript{2} emission because of shorter transport.

Scientific research shows that sewage sludge ash can be used in concrete. By acid washing the sewage sludge ash most of the phosphorous can be recycled. This project will examine whether it is possible that ash washed in acid can be used as replacement for cement in concrete. It is a fact that 20% of the cement can be replaced by ash washed in acid. All in all an up to now unused secondary source of phosphorous and the mineral residue will be used in concrete.

When waste water is cleaned, filtered and burnt by high temperature we have a product called sewage sludge ash. When iron is used the ash gets a reddish colour, aluminum a neutral color. This project uses iron based ash, “Avedøreaske” and aluminum based ash, “Lundtofteaske”. Sewage sludge ashes are washed with 2 types of acid: H\textsubscript{2}SO\textsubscript{4} and HNO\textsubscript{3}.

“Avedøreaske” and “Lundtofteaske” are both tested for pressure. A mould made of mortar is made with and without crushed ashes, and with different amounts of ash according to the cement they replace. These moulds are tested for strength and compared with each other and with references.

Tests are made in order to show the amount of elements in the ashes. By examining the ash before and after the acid wash it is possible to establish what has happened to the ash, for example how much phosphorous has been removed.

Provisional conclusion: Ash washed in acid can be used in concrete. This concrete, however, has diminished strength and must therefore only be used in cases where very strong concrete is not a necessity. The ash ought to be washed in acid so that the recovered phosphor in the ash can be recycled.

“Avedøreaske” might create a problem because it gives the concrete a reddish colour. “Lundtofteaske” with its neutral colour it is preferable. Also because: No or little deposition is needed, Recycling of phosphorous and CO\textsubscript{2} reduction because of shorter transport of the ash.

Beam modeling of wind turbine blades

Lasse Tidemann and Jacob Norregaard

DTU Civil Engineering, Technical University of Denmark
s092831@student.dtu.dk, s092834@student.dtu.dk

INTRODUCTION
This project investigates the modeling of wind turbine blades as beams with different kinds of beam elements. The wind turbine blades are investigated with respect to static deflections and with respect to the first three free eigenfrequencies. In the investigations both a modified version of a classical beam element is used as well as a statically determinate beam element which is better at handling beams with varying cross section parameters.

WHY IS IT A GREEN PROJECT?
The project itself might not seem like a very green project – for instance it does not directly affect the overall carbon footprint. It is a very green project though – indirectly! It will be possible to design a wind turbine blade all on paper - with respect to the structural properties. Therefore the project has a lot of green perspectives. It CAN improve the material consumption, since it will no longer be necessary to produce a wind turbine blade and then test it in a “trial and error”-way as it has been and partly still is in the wind turbine industry. The project is therefore green – maybe not in a direct way, but it has some very green byproducts that could help the world with the current climate problems.

FOR THE TECHIES
The standard beam elements have been modified, so the stiffness matrix is no longer predefined from length, bending stiffness etc. Instead a three-dimensional beam element is modified so that it makes numerical integration and determines the stiffness matrix in that way. The element then contains information of moment of inertia with respect to the axes, axial stiffness etc. in distinct points of the element. If two points are known, linear interpolation is used and if multiple points are known then cubic spline-functions are used to interpolate the data.

The statically determinate beam elements have been suggested before by Jan Høgsberg and Steen Krenk. This kind of element is ideal because it is analytical correct even though the cross section parameters are not – opposing to the standard beam element, which is only analytically correct when the cross section parameters are constant. The same method of interpolating the data is used for the statically determinate beam element as for the standard beam element.

CONCLUSION
The project is at the current time (May 2012) still running and all of the data have not been analyzed yet, so the total improvement of the elements is still not fully determined. Some of early conclusions are clear though – the modified standard beam element is able to calculate the correct first eigenfrequency of a 62.5 meter long wind turbine blade with an error margin of less than 0.8% when using only 3 elements and 40% of the structural data for the blade. And that is a time saver when calculating on bigger constructions, a whole wind turbine and so on. Indeed very interesting. So come say hi to us in June and hear how it all ends – and how we hopefully can help the world become greener in a smarter way!