Storm water handling and flood prevention for community leaders

David Jonathan Jensen

1DTU Chemistry, Technical University of Denmark
2DTU Mechanical Engineering, Technical University of Denmark

CONCEPT

Many informal settlements experience issues with flooding due to seasonal rain. This has strong negative implications on the way of life and also has negative impact on the environment. In certain situations the problem can be alleviated by managing runoff/storm water in the local area. Sustainable interventions should involve the municipality and/or the local community but due to e.g. the informal nature of the settlements the municipality cannot always get involved. The purpose of this project is to compile a manual of flood prevention/alleviation interventions that can be executed by the communities in the informal settlements.

The manual restricts itself to simple solutions and to a large extent adopts the ideals of SUDS. Thus this manual will not only help to prevent the negative environmental impacts of flooding but will help to implement more sustainable ways to handle storm water.

Where possible the water will be used to recharge groundwater, grow greenery and supply household with water collected from rooftops. Any solution will be under close scrutiny as to it not causing environmental harm (e.g. contaminates groundwater) or harm to way of life.

BACKGROUND

The manual is intended for Shack Dwellers International (SDI) which is an organization that manages networks of Shack dwellers on a world-wide basis. If the manual is found to be successful it can be recompiled and redistributed to other organizations. The manual is being written as a project under Engineers Without Boarders (EWB) in Cape Town. The manual is DTU project work of David Jonathan Jensen.

MANUAL OUTLINE

The manual will be 8 to 10 pages easily understandable and illustrated. It will be translated into relevant languages (Xhosa, Africans)

Page 1: Information on why it is important to make interventions against flooding. This information is intended to invoke community leaders to get projects going. It is also of use for community leaders when looking to get the entire Community involved.

Page 2: Background on why flooding occurs in form of understandable theory on storm water and runoff. This information will be presented in relation to informal settlements

Page 2-4: An introduction to a project cycle and which steps to take before construction of an intervention.

Page 4-10: Contains the DIY (Do it yourself) manual part and will be very much like any other handyman manual.

The Reverse Osmosis Concentrate from Water Reuse Process and its Treatment Technologies

Soomin Woo

KAIST Civil and Environmental Engineering, Korean Advanced Institute of Science and Technology

ABSTRACT

The global demand for the fresh water is ever increasing. One solution can be the production of reuse water from wastewater treatment plants. To meet the strict standards for the reuse water, advanced wastewater treatment is necessary. Among the tertiary processes to produce reuse-able water, reverse osmosis has a high potential for its advantages in module construction, small carbon footprint, and requirement of relatively simple process. However this process has a problem of producing concentrate, is very detrimental to the environment if disposed without treatment.

The important characteristics of the RO concentrate are high pollutant load, such as COD, nitrogen, and phosphorus. The Advanced Oxidation Processes may be advantageous for the dissolved organic carbon, for example, ozonation, photo-catalysis, sonodysis and electrochemical oxidation. Among these technologies, electrochemical oxidation has the highest potential for the future for its highest accomplished efficiency and increased energy efficiency due to saline RO concentrate.

The RO concentrate also has potential for the future source of nutrient and salt ions. However its economic advantage must be studied. The treatability of RO concentrate has been focused on dissolved organic carbon. However, nitrogen and phosphorus concentration in the brine are also very significant and thus need to be studied extensively.

In KAIST, there are some research studies to produce reuse-able water and treat the RO concentrate. One is denitrification of the concentrate using membrane biological reactor. Another is reduction of nitrate by using nano-scale zero valent iron parties. There is also another research to understand the impact of salinity on the performance of biological process of the RO concentrate.

REFERENCES

