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Abstract

The simulation of multispecies reacting systems in porous media is of importance in
several different fields: for computing the near field in nuclear waste simulations, in the
treatment of bio-remediation, and in the evaluation of underground water quality.

When looking at a coupled system, the role of chemistry is simply to separate the
species into mobile and immobile species (immobile species may come from either sorption
or precipitation reactions, and are not subject to transport). In this work, we assume that
the medium is saturated, and that surface reactions do not change the porosity.

Multi-species chemistry involves the solution of ordinary differential equations (if the
reactions are kinetic) or nonlinear algebraic equations (if we assume local equilibrium).
When simulating a coupled system, these equations have to be solved at each (grid)
point, and at every time (step), leading to a huge coupled non-linear system. As has been
observed several times, it is essential to use efficient numerical methods so as to be able
to handle the size of systems occurring in the applications.

If we assume local equilibrium, than the coupled system may be written as a DAE. Since
methods and software for solving DAEs have reached a high level of maturity (at least for
small index systems, which is the case here), it is natural to try and use this technology.
One important issue is the size of the system to be solved, as all chemical species at all
grid points are coupled. For any realistic configuration, it will not be possible to form, let
alone factor, the Jacobian matrix. A better solution is to use Newton–Krylov methods,
where the linear system at each Newton iteration is solved by an iterative method. We
can thus keep the fast convergence of Newton’s method, while only requiring Jacobian
matrix–vector products, and these can be approximated by finite differences.

We will discuss two methods, based on different choices for the main unknowns:
In the “one level” method, we take as unknowns both the total dissolved and fixed

concentrations, but also the concentrations for the component species that are the main
unknowns of the chemical problem. This is closely related to the Direct Substitution
Approach used by the geochemists. By carefully formulating the problem, we can put it
into the DAE framework. At each time step, a single non-linear system has to be solved,
and the Jacobian matrix couples both the transport matrix, and the chemistry Jacobian
matrix. The method is called one-level as we solve transport and chemistry at the same
time. Provided that we can access this Jacobian matrices (and this may not always be
possible in practice), this may be less expensive than the two-level methods below.
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The second, “two-level” method takes as unknowns only the total dissolved and fixed
concentrations. The system to be solved at each time step requires the solution of the
chemical sub-problem at each Newton iteration, when evaluating the residual. On the
other hand, the Jacobian matrix again involves the transport matrix, as well as the
Jacobain of the “chemical solution operator” mapping. This is only known implicitly, and
the Jacobian has again to be evaluated by finite differences. Even though this method may
be more expensive than the one-level method, its main advantage is to make it possible
to treat chemistry as a black–box, even in the Newton–Krylov context. This may be
important, as chemical simulators are becoming increasingly sophisticated.

A major issue for both methods will be the choice of a suitable preconditioner.

1. INTRODUCTION

The simulation of multispecies reacting systems in porous media is of importance in
several different fields: for computing the near field in nuclear waste simulations, in the
treatment of bio-remediation, and in the evaluation of underground water quality.

Multi-species chemistry involves the solution of ordinary differential equations (if the
reactions are kinetic) or nonlinear algebraic equations (if we assume local equilibrium).
When simulating a coupled system, these equations have to be solved at each (grid)
point, and at every time (step), leading to a huge coupled non-linear system. As has been
observed several times, it is essential to use efficient numerical methods so as to be able
to handle the size of systems occurring in the applications.

In this paper, we study different formulations of the coupled reactive transport problem,
and we compare a formulation for global coupling with the more traditional operator split
approach. As the Jacobian matrix is likely to be very large, we use a Newton–iterative
method to solve the non-linear system that occurs at each time step.

We start by a description of the test case that we use for comparison of our implemen-
tation of global and sequential approach, followed by the physical model. We then discuss
the numerical methods we use, and present numerical results.

2. TEST CASE TRANSPORT AND CATION EXCHANGE

The following example of advective transport in the presence of cation exchanger is
adopted as a first test case comparison of both approaches. The example is used in
documentation of PHREEQC-2 [Parkhurst and Appelo (1999)] as Example 11. The one-
dimensional simulation problem describes a column experiment where the chemical com-
position of the effluent from a column containing a cation exchanger is simulated. Initially,
the column contains a sodium-potassium-nitrate solution in equilibrium with the cation
exchanger. The column is then flushed with three pore volumes of calcium chloride so-
lution. Calcium, potassium, and sodium react to equilibrium with the exchanger at all
times. The flow and transport parameters used for this example are presented in 1, and
the aqueous initial and flushed concentrations are listed in 2. The Cationic Exchange
Caacity for the exchanger is 1.1 mmol/l.
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Darcy velocity 2.78 10−6 m/s
Diffusion coefficient 5.56 10−9 m2/s
Length of column 0.08 m
Mesh size 0.0002 m
Duration of experiment 1 day
Time step 720 s

Table 1. Physical parameters

Component Cinit Cinflow

Ca 0 0.6 10−3

Cl 0 1.2 10−3

K 2.0 10−4 0

Na 1.0 10−3 0

Table 2. Aqueous concentrations

The chemical reactions for this example can be written as:

Na+ + X−

 NaX

K+ + X−

 KX

1

2
Ca2+ + X−




1

2
CaX2

X indicates exchange site with a charge -1

3. REACTIVE TRANSPORT EQUATIONS

3.1. Transport model. We consider Nc mobile species C1, C2,...,CNc and Ns sorbed
species. The mobile species are convected by a known Darcy flow field U and are subject
to dispersion. If we consider only transport in a single, aqueous phase, then the transport
operator L is linear

L(C) = ∇(U C) −∇ · (D∇C),

where D is the dispersion tensor and q. We assume that the transport operator is the
same for all species, i.e. L(C1, C2, ..., CNc) = (L1C1, L2C2, ..., LNcCNc). The transport
problem for one species is then written as

∂C

∂t
+ L(C) = q, (1)

where q is known source term.

3.2. Chemical equations. In our study, we assume a local chemical equilibrium at every
point. This leads to a relationship between components and products of chemical reaction:
one mass action law for each chemical reaction, and one mass conservation equation for
each component (we have used the Morel formalism [Morel and Hering, 1993], where each
reaction involves several components that combine to give one product). This leads to a
system of algebraic equations















C = c+ STx
W = s+BT y
F = ATy
T = C + F

and

{

log x = S log c+ logKx

log y = A log c+B log s+ logKy
(2)

where:

• c, s are the concentrations for aqueous and sorbed component
• x, y are the concentrations for aqueous and sorbed secondary species
• T is the total aqueous concentrations
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• W is the total sorbed concentrations
• Kx, Ky are vectors of equilibrium constants
• A, B, S are matrices of stoichiometric coefficients,

and we have also introduced, for each component, its total dissolved concentration C, and
its total sorbed concentration F .

For the coupled problem, it will be convenient to condense the chemical sub-problem
by a function Ψ : F = Ψ(T,W ) means that given T and W , F we solve the above system
of equations for c and s, and compute F as indicated.

3.3. Coupled transport and chemistry. To obtain the model coupling transport and
chemistry, we write one equation like (1) for each species (if the species if immobile, we
omit the term L(s), and we combine them using the conservation of mass relations. This
leads to an equation

∂Tj

∂t
+ L(Cj) = 0 j = 1, .., Nc

for each component, where

• Tj is the total concentration for component j,
• Cj is the total aqueous concentration for component j.

Theses two quantities are related by equation (2) above, with Tj = Cj + Fj.

4. DIFFERENT COUPLING ALGORITHMS

We first discretize the transport equation in time, using the backward Euler method
for simplicity :

Cn+1 − Cn

∆t
+
F n+1 − F n

∆t
+ LCn+1 = qn+1. (3)

Because of diffusion, it is essential to use an implicit algorithm. On the other hand, care
must be taken to properly resolve the convective part. At each time step, the system
formed by equation (3) (one for each component) and equation (2) (one for each grid
point) form a large nonlinear system, whose size is the number of components times the
number of grid points. This system has traditionally been solved by a sequential two-steps
approach, as reviewed below (cf.[Yeh and Tripathi, 1989]. However, this method suffers
from several defects: it may severely restrict the step size to ensure convergence, and its
convergence is only first order. Due to its quadratic convergence rate, Newton’s method
would be an ideal candidate for solving the system. However, we encounter a practical
difficulty: Newton’s method requires the solution of an linear system with the Jacobian
matrix at each iteration step. In realistic situations, it will not be possible to store, much
less factor, the Jacobian matrix. As we shall see in the next section, this difficulty can be
overcome by resorting to iterative methods to solve the linear system. Before we detail
this step, we go back to an explanation of different coupling methods.

4.1. Sequential approach. The sequential approach consists of separately solving the
chemical equations and the transport equations. More precisely, at each time step, we
first solve equation (3) for Cn+1, with F n+1 given for the chemistry substep. We then
solve the chemistry system, with T n+1 computed with the previous value for C, and we
possib ly iterate the whole procedure. In the geochemical literature, this is known as an
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operator splitting approach, but it is more properly a block Gauss-Seidel methods on the
coupled system.

4.2. Direct substitution approach. This method consists in solving for the individual
concentrations of the components, that is substituting equations (2) in equation (1) (this
can be done explicitly, cf. [Hammond et al. 2005], or implicitly, cf. [Saaltink et al. (1998)],
[Erhel (2005)]). It is also possible to reformulate the problem as a differential algebraic
system (DAE), and to take advantage of the high quality software available for such
problems.

4.3. Two level global algorithm. In this approach, we do not directly substitute the
chemical equations in the transport equation, but we use the function Ψ introduced previ-
ously to represent the effect of chemistry. Different formulations can be adopted depending
on the choice of unknowns. We have chosen to use both the total dissolved and mobile
concentrations, and also the total concentrations. After spatial discretization (but still
denoting the discrete operator by L), our problem can be written as







(I + ∆tL)Cn+1 = Cn + ∆t qn+1 − (F n+1 − F n)
T n+1 = Cn+1 + F n+1

F n+1 = ψ(T n+1)
(4)

5. NUMERICAL METHODS

It is impractical to attack the nonlinear system (4) directly. The numerical methods
for transport and chemistry are quite different, and it is even possible that simulation
codes have been written by different groups. The formulation given above lends itself to
an implementation of Newton’s method that allows to keep the two codes separate. The
Jacobian may even be formed in block form, provided the individual codes provide their
Jacobians (this is obviously easier for transport than for chemistry). Before we detail
how we solve the coupled problem, it is worth saying a few words about the chemistry
subproblem (the transport step is easier, or at least more common. We have used a simple
upwind finite difference for our 1D example).

5.1. Chemistry. As we have seen before the chemical problem can be written as:














T = c+ STx+ ATy
W = s +BTy
log x = S log c+ logKx

log y = A log c+B log s+ logKy

T is determined by the transport equation, and for simplicity we assume that W is
constant (in our case, it is simply the Cationic Exchange Capacity of the exchanger).

Due to the wildly different orders of magnitude of the concentrations that are com-
monly encountered, we have reformulated the chemical problem by using as main un-
knowns the logarithms of the concentrations. This has the added advantage that con-
centrations are automatically positive, and has become the standard way to solve the
problem [van der Lee (1993)]. As is well known, Newton’s is not always convergent, and
especially for a code that is designed to be used in coupling applications, it is essential
to ensure that the solver “always” works. We have found that using a globalized version
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of Newton’s method (using a line search, cf. [Kelley (1995)]) was effective in making the
algorithm converge from an arbitrary initial guess.

5.2. Algorithm for the coupled problem: Newton–Krylov method. As men-
tioned above, it is impractical to solve the coupled problem (4) by the classical Newton’s
method, due to the size of the Jacobian. A possible solution is provided by the Newton–
Krylov method (see [Kelley (1995)], [Knoll and Keyes 2004] and [Hammond et al. 2005],
to which our work is closely related), where the linear system that arises at each step of
Newton’s method is solved by an iterative method (of Krylov type). The main advantage
of this type of method is that the full Jacobian is not needed, one just needs to be able
to compute the product of the Jacobian with a vector. As this is a directional derivative,
this leads to the Jacobian free methods, where this product is approximated by finite dif-
ferences. However, in our particular case, is it possible to compute the needed directional
derivative exactly, provided we can obtain the Jacobian of the chemical subproblem. This
is both cheaper and more accurate.

The Jacobian matrix has a natual block structure, and it is natural to exploit it when
computing the matrix–vector product: if we number the unknowns as (C, T, F ), the
Jacobian is

J =





I 0 L
I −I −I
0 Ψ′(T ) −I



 ,

where L = diag(L, L, . . . , L) and Ψ′(T ) is the Jacobian of Ψ, that also has a block structure
(though it is not block diagonal, as the unknowns have been number per species). The
Jacobian matrix–vector product can be computed block by block. Within the first block,
the computation is done species by species, and within the last block, kit is done grid
point by grid point. This gives a natural parallelism to the method, without sacrificing
the fast convergence rate of Newton’s method.

The Krylov method is used to solve the linear system Jδxk = −f(xk). An initial
linear residual r0 is defined, given an initial guess δx0 (is typically zero), for the Newton
correction,

r0 = −f(x) − Jδx0

Let j the Krylov iteration index, the jth iteration minimizes ‖Jδxj + f(x)‖
2
δxj is drawn

from the subspace spanned by Krylov vectors, {r0, Jr0, J
2r0, . . . , J

j−1r0}, and can be
written as

δxj = δx0 +

j−1
∑

i=0

βi J
ir0

where the scalars βi are computed so as to minimize the residual (see [Kelley (1995)] for
details and an account of the theoretical justifications, that show how accurately the inner
linear system should be solved depending on the outer iterations). It is also necessary to
globalize the algorithm, and this can be done just as in the “classical” Newton’s method.

In our application, we found that Newton- iterative method was more robust than
Newton’s method based on a direct solution of the linear system, in the sense that it is
less sensitive to the both grid size and chemistry.
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6. NUMERICAL RESULTS

In this part we apply both the sequential method and the two–level method to the test
case described in section 2 and compare both computational demands and the accuracy of
the solution. The results obtained by the both approaches are analogous, they are shown in
the same figure below, and they are similar to the results in [Parkhurst and Appelo (1999)].

The figure to the right shows elution
curves, that is the evolution of the con-
centration of the various species at the
end of the column, as a function of
time. The sorbed potassium and sodium
ions are successively replaced by cal-
cium. Because potassium exchanges
more strongly than sodium (as indicated
by a larger value of log K in the exchange
reaction), sodium is released first, fol-
lowed by potassium. Finally when all
of concentration has been released, the
concentration of calcium increases to its
steady-state value, the potassium is dis-
placed from the exchanger and the con-
centration in solution increases to bal-
ance the Cl− concentration.

Experimental results show that the sequential approach require less CPU time then
the global approach for a small number of nodes and a simple chemical problem such as
the one considered here, but for larger grids the global approach seems to be the most
appropriate, faster than the sequential one, because of the use of an iterative method and
a good choice of the preconditioner will accelerate the convergence and reduce the CPU
time of the global approach.

We also look at the efficiency of the
Newton–Krylov method. We plot the
nonlinear residual versus the number of
function calls, for a typical time step.
Note that this includes the function
evaluations needed for the linear GM-
RES iterations. As expected, when we
compare different linear solvers, GM-
RES required fewer calls than other
solvers BICGSTAB, TFQMR, but the
cost of one iteration is more expensive
for GMRES.
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7. CONCLUSIONS – PERSPECTIVES

The preliminary results we have shown are promising: it is possible to solve efficiently
geochemical problems using a Newton–Krylov method. This investigation is just begin-
ning, and there remains several issues that need to be addressed.

• the first is to run test cases on more demanding configurations, where we expect
the method to show its full potential.

• it will then certainly be necessary to explore the question of how to precondtion
the Jacobian, to reduce the number of Krylov iterations. An natural avenue is to
reuse the operator splitting methods, as proposed by [Hammond et al. 2005].

• A more difficult problem will be to take into account precipitation–dissolution
phenomena in the chemical model. As the models are non-differentiable, this
makes it more difficult to employ Newton’s method.
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